Review Preparation, structure and properties of transition metal trichalcogenides

S. K. SRIVASTAVA, B. N. AVASTHI

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India

In recent years, the transition metal trichalcogenides (TX_3) of Group IVB, VB and VIB have received much more attention because of the considerable diversity in their physical properties. The most striking feature of these compounds is that the structure here may be classified into three types depending on the number of different TX_3 chains present in the unit cell. Thus $ZrSe_3$, $TaSe_3$ and NbSe₃ are the representative compounds having one, two and three types of chain based on the different bond lengths for the $(X_2)^{2-}$ pairs in the base of the TX_3 trigonal prismatic framework. A similar model is also applicable in the case of NbS₃, with the addition of a 2*b*-superstructure associated with the formation of niobium pairs. The chain structure also facilitates the process of intercalation which has been most effectively used in secondary batteries. These compounds exhibit the superconductivity phenomena and charge density wave, etc. and also find application in photoelectrochemical cells. An attempt has been made here to review the up-to-date chemistry of transition metal trichalcogenides related with their preparation, structure and properties such as physical and chemical, thermodynamic, electrical, magnetic and optical properties, intercalation and use in the photoelectrochemical cells.

1. Introduction

Transition metal trichalcogenides $TX_{3,1}$ (T is a transition metal of Group IVB, VB and VIB, X is a chalcogen, S, Se, Te) constitute structurally and chemically a well-defined family of compounds. These trichalcogenides are thin fibrous ribbons and offer several interesting phenomena originating from their strong anisotropy. The electronic structure of these compounds is of considerable interest both from the experimental and theoretical points of view. They possess a pseudo one-dimensional structure where there is an infinite chain of trigonal prismatic [TX₆] units extending parallel to the *b*-axis and share upper and lower faces. The chains with strong ionic covalent (or metallic) bonding are separated by a relatively large distance and interchain bonding, and are weak. Thus a- and c-planes perpendicular to the chain axis in TX_3 crystals are more compressive than in more ordinary metals, alloys or compounds. As a result, these compounds exhibit marked anisotropy in most of their physical properties, which accounts for the great interest in this family of compounds. In addition, the chaintype structure in TX₃ results in the formation of intercalation compounds. These compounds also exhibit superconductivity and charge density wave (CDW) phenomena. The attemps have also been made to study the photoelectrochemical behaviour in these compounds.

The main purpose of this review is to present the up-to-date chemistry of the transition metal trichalcogenides concerned with their preparation, structure and properties, e.g. physical, chemical, thermodynamic, magnetic, electrical, optical and intercalation, and their use in photoelectrochemical cells. It is hoped that the present article will help research workers in selecting methods for growth of crystals with desired properties, in order to stimulate further research in the domain of transition metal trichalcogenide chemistry.

2. Experimental procedure

2.1. Group IV

 TiS_3 can be prepared by passing a mixture of $TiCl_4$ and H_2S vapours in a pyrex tube in the temperature range 480-540 °C [1]. The product is mainly TiS₂ which is further subjected to an excess of sulphur in a vacuum-sealed tube for 3 days at 600 °C. The product still contains chloride and so is further heated to about 600 °C for 2 days. This results in the formation of TiS_3 and some unreacted sulphur which is mainly removed by distillation at 400 °C. Another simple method to prepare a chlorine-free product is from the direct union of the elements in a vacuum-sealed tube at 650 °C for 4 days [2]. Recently, TiS₃ has been prepared by the reaction of TiCl₄ and organic sulphurizing agents, e.g. hexamethyldisilthane, simply by heating the obtained amorphous powder or by heating this powder in the presence of sulphur at 300 °C [3]. Oshima et al. [4] synthesized it from the elemental constituents in appropriate proportion at 600–750 °C and 10–20 MPa [5].

TiS₃ is a black crystalline powder with a density of 3.22 g cm^{-3} . It is unaffected by hydrochloric acid and is converted to dioxide hydrate by nitric acid, with the release of sulphur. TiS₃ reacts rapidly with boiling 5 N NaOH solution. It forms TiO₂ on heating in air.

The trisulphides of zirconium, in general, and hafnium, in particular, have been less studied than that of titanium. The preparative methods for ZrS_3 are very similar TiS₃, i.e. by reacting $ZrCl_4$ vapours with H₂S or from elements in the temperature range 600-800 °C. ZrS_3 , in general, and HfS₃, in particular, have been less studied than that of titanium. The preparative methods for ZrS_3 are very similar to TiS₃, i.e. by reacting $ZrCl_4$ vapour with H₂S or from elements in the temperature range 600-800 °C. $ZrTe_3$ thin films were also deposited by a sputtering technique using Zr-Te targets on various substrates e.g. glass, Si, Mo, etc. [5]. ZrX_3 and HfX₃ decompose, when heated in air, to the corresponding ZrO_2 and HfO₂ [6].

2.2. Group V

An exhaustive study on the Nb-S system has been carried out by Kodyk and Jellinek [7]. NbS₃ and TaS_3 can be prepared directly from the elements in a stoichiometric proportion with a slight excess of sulphur at 700 and 750 °C, respectively. NbS₃ can also be obtained in a similar way when heated at 700 °C for 15 days [17]. Kikkawa et al. [8, 9] used for the first time the high pressure-high temperature techniques to synthesize TaS₃, NbS₃, TaSe₃ and NbSe₃. The procedure involved the mixing of respective powdered metal and chalcogen to give the desired composition which was then subjected to 700 °C temperature and 2 GPa pressure for 30 min. All the products were black sintered masses. This method has not been used for other trichalcogenides and therefore requires further attention. NbTe₃ and TaTe₃ are not known to exist.

 TaS_3 remains unaffected by hydrochloric acid and sodium hydroxide, but is rapidly oxidized by nitric acid. It decomposes to TaS_2 and sulphur when heated at 650 °C in a vacuum.

2.3. Group VI

Opalovskii and Fedorov [10] were the first to review the chemistry of molybdenum chalcogenides. MoS₃ is one of the sulphide molybdenums which is well established. Its direct synthesis from the elements is not feasible from the thermodynamic point of view. MoS₃ can be prepared by saturating alkali molybdate with H_2S or dissolving MoO₃ in alkali sulphide and then decomposing the thiomolybdate thus formed with dilute hydrochloric acid [10, 11]. MoS₃ thus prepared is reported to have variable compositions, e.g. $MoS_3 \cdot 2H_2O$ [12, 13], $MoS_3 \cdot H_2O$ [14], MoS_{3+x} . $yH_2O[(0 < x < 1); (y > 0)]$ [15], $3MoS_3 \cdot H_2O \cdot H_2S$ [16, 17]. Pure MoS_3 can be obtained by thermal decomposition of (NH₄)₂ MoS₄ crystals in the temperature range 150-280 °C [14]. A solid state reaction between MoO₃ and thiourea at 130 °C has also been reported [18]. In recent years, thin films of MoS₃ have

3694

been deposited by electrochemical methods from aqueous and non-aqueous solutions of $(NH_4)_2MoS_4$ [19]. The chemical vapour deposition technique from MoF₆ and hexamethyldiseathiane at 200–250 °C has also been successfully employed [20].

 MoS_3 is a brownish-black product. Prolonged heating at 1100 °C in vacuum is necessary to convert MoS_3 to well-crystallized MoS_2 [21–24]. In air it loses water of hydration at about 200 °C but does not become oxidized below 390 °C [13, 15]. It was reported that the conversion of nonstoichiometric MoS_3 to MoO_3 during heating in air proceeds through amorphous and crystalline MoS_2 and partially MoO_2 [25].

WS₃, MoSe₃ and WSe₃ can be prepared in a similar manner to MoS₃ from ammonium thiomolybdate and thioselenate, respectively [26]. The solubility of WS₃ in water depends on temperature. It is soluble in a cold concentrated solution of CO₂, indicating its acidic character. It is also soluble in basic solutions. Above 1700 °C, WS₃ dissociates to WS₂ and sulphur. Hydrogen reduces WS₃ to WS₂ and then metallic tungsten, unlike MoS₃, which is reduced to metallic molybdenum via the formation of first MoS₂ and then Mo₂S₃ [27]. WSe₃ is a black solid and soluble in concentrated hydrochloric acid. It is decomposed to WSe₂ at 220 °C.

2.4. Single-crystal growth

Successful attempts have also been made to grow single crystals for some of transition metal trichalcogenides [28–31]. The crystals are grown from the vapour phase, slow cooling producing sublimation, or by mineralization. But the chemical transport techniques have been used more frequently by using I₂, ICl₃, S₂Cl₂ or TeCl₄ as transporting agents. Levy and Berger [32] reviewed the most important results on the crystal growth of these transition metal trichalcogenides. The crystals are in the shape of platelets and ribbons or needle-type for Group IVB and VB, respectively. No crystalline materials could be prepared for Group VIB compounds. Table I records the most suitable preparative conditions to grow the single crystals of larger size and best quality.

3. Crystal structure of transition metal trichalcogenides

The crystal structure of transition metal trichalcogenides has received much more attention in the last few years [33–36]. The crystal structure, in general, possess the same structural unit, i.e. TX_6 trigonal prisms stacked in order to form TX_3 trigonal prismatic chains, which develop parallel to the *b*-axis of the monoclinic cell (Fig. 1). As a result, there is a tendency in these chalcogenides to attribute one-dimensional characteristics. However, they differ from each other in shape and packing of trigonal prism chains. Such differences result in a large variation in electrical properties. Wilson [37] classified these trichalcogenides into three structural types based on $[TX_3]$ chains which may not be equivalent due to the difference in chalcogen-chalcogen bonds in the trigonal prismatic

TABLE I Conditions to grow single crystals of transition metal trichalcogenides by chemical transport reactions

	Temperature (°C	C)	The second second	Best condition	ons
Crystals	Source	Growth	agents	(°C)	Agent
TiS ₃	600-500	500-450	I_2 , S_2Cl_2 , ICl_3 , S	550-500	ICl ₃
ZrS ₃	850-650	800-600	I_2 , S_2Cl_3 , ICl_3	750-730	S_2Cl_3
-				650-600	I ₂
	950-750	725-550	I ₂	650-600	I ₂
ZrSe ₃	750-650	700600	I_2 , Se ₂ Cl ₂	650-600	I ₂
ZrTe ₃	800-650	700-600	I_2 , TeCl ₄	650-600	I ₂
HfS ₃	850-650	800-600	I_2, S_2Cl_2	650-600	I ₂
HfSe 3	700-650	650-600	I_2 , Se ₂ Cl ₂	650-600	I ₂
NbS ₃	700-650	700-600	$I_{2}, S_{2}Cl_{2}, S$	670-610	10%S
NbSe ₃	750-650	700600	I_2 , S_2Cl_2 , Se, ICl_3	720-710	10%Se
U			2, 2, 2, , , , ,	680660	ICl ₃
TaS ₃	700-650	550-450	I_2, S_2Cl_2, S	550-500	$S_2Cl_2, 30\%S$
TaSe ₃	750-650	710-600	I_2 , ICl_3 , Se	700680	10%Se

Figure 1 Schematic general representation of transition metal trichalcogenides.

base of the trigonal prismatic rearrangements. This classification is primarily based on the relative position of $[TX_3]$ chains. Thus the transition metal trichalcogenides which exhibit one, two or three types of chain may be represented by $ZrSe_3$, $TaSe_3$ and NbSe₃, respectively.

The crystal structure of ZrSe₃ shows the presence of one type of chain with an Se-Se bond length of 0.234 nm, which corresponds to the formation of $(Se_2)^{2-}$ pairs (Fig. 2a) [38, 39]. Further studies based on X-ray spectroscopy also confirmed the $(X_2)^{2-}$ pairing in the trigonal base [40]. The figure shows that in the ZrSe₃ prism, two or more selenium atoms in the base of each prism are bonded at a distance comparable to pure selenium (0.230 nm) while other Se-Se distances are considerably larger. The prisms share their tops and bottom with each other, forming columns of $ZrSe_6$ along the *b*-axis. The columns are displaced by a/2 with respect to each other. Each metal has two selenium neighbours in adjacent columns at distances scarcely longer than those of its six intracolumn ligands. The one-dimensional columns

are linked with the intercolumn bonds forming successive layers by van-der Waal's gaps. The crystal structure of NbS₃ may also be discussed on the same grounds. Here, the S-S distance corresponds to the formation of $(S_2)^{2-}$ anions. However, the presence of 2*b*-superstructure has also been observed and is associated with the formation of niobium pairs [41].

The structure of TiS₃ is isostructural with ZrSe₃ [42]. It shows that parts of the chalcogen atoms form pairs so that the compound may be recorded as a polysulphides $Ti^{4+}S^{2-}(S_2)^{2-}$, which was further confirmed by X-ray photoelectron spectral studies [43]. The cation is surrounded by four S²⁻ ions and two $(S_2)^{2-}$ groups. The crystal structure of ZrS₃ and HfS₃ has been much less studied than that of TiS₃. These may also be regarded as having the same polysulphide structure.

The structure of TaSe₃ is monoclinic having two types of regular chain (Fig. 2b) [44]. The Se–Se bond lengths are 0.258 and 0.291 nm, respectively, exceeding the value of $(Se_2)^{2-}$ pairs.

NbSe₃ possess three kinds of chain in unit cell corresponding to a short (0.237 nm) (III), a mean (0.248 nm) (I) and a long 0.291 nm (II) Se–Se bond in the base of trigonal prismatic chains (Fig. 2c) [45–47]. The short bond length, 0.237 nm, is due to $(Se_2)^{2-}$ pairs as in ZrSe₃, and would correspond to a weakening of the Se–Se bond and a strengthening of the Nb–Se bond. This would bring about an intermediate situation for the niobium atoms (between Nb⁴⁺ and Nb⁵⁺).

TaS₃ exists in an orthorhombic modification whose structure is not well established [48]. The unit cell is large and contains 24 chains. The formation of monoclinic phase [8, 49, 50] has also been reported. It is isostructural to NbSe₃ with a little difference in interatomic distances (Fig. 2d). It possess here three kinds of six chains. There are two short distances, S-S = 0.207 (III) and 0.211 nm (I) leading to a covalent bonding $(S_2)^{2-}$, and a long one of 0.284 nm (II) in Columns I and III, respectively, and they are interconnected through Column II.

Band structure calculations have been made for some of the transition metal trichalcogenides in order

Figure 2 Projection along [010] of the monoclinic (a) $ZrSe_3$, (b) $TaSe_3$, (c) $NbSe_3$, (d) TaS_3 structure. $\begin{pmatrix} O & T \\ O & Se \end{pmatrix} y = \frac{1}{4}$.

to explain the change in their properties based on the crystal structure differences [51-56]. The photoelectron spectroscopic studies have also been used for TiS₃, NbS₃ and TaS₃ in order to obtain information about their valency band structure [57]. The presence of stacking disorder in NbS₃, and ZrSe₃ has also been investigated [58].

MoS₃ and WS₃ are amorphous towards X-rays [59]. The earlier studies on MoS₃ provided no conclusive evidence that it is a definite chemical compound rather than an intimate mixture of sub-crystalline MoS_2 and amorphous sulphur [60–62]. However, it was concluded from X-ray photoelectron spectral measurements that MoS₃ is an intimate association of subscrystalline MoS₂ and amorphous sulphur [63]. Diemann [64] studied extensively the structure and properties of MoS₃ and its related noncrystalline trichalcogenides, and concluded that these trichalcogenides are compounds in their own right, and not a mixture, as suggested by previous studies [60–63]. Liang et al. [65], based on their experimental observations, proposed a chain-type structure similar to crystalline trichalcogenides of neighbouring IVB and VB group elements where adjacent metal atoms are bridged with three sulphur atoms along the chain. The structure has two metals paired up with a shorter metal-metal distance and one polysulphide atom in the chain bond in every other sulphur triangle. As a result, these amorphous trichalcogenides may be regarded as $T(V)(S_2)_{1/2}^{2-}(S_2)^{2-}$. Raman spectra studies of MoS₃ also confirmed the presence of polysulphide bonds and supported the chain-type structure for amorphous MoS_3 , similar to that of crystalline MS_3 (M = Ti, Zr, Hf, Nb, Ta) [66]. The other workers [64, 67-69] also investigated MoS₃ and suggested that MoS₃ is in the reduced state, probably Mo(V). Goodenough [69], while reviewing the solid state chemistry of molybdenum compounds, also concluded that the oxidation state of molybdenum in trisulphide is indeed Mo(V), and that the molecular formula is $(Mo^{5+})_2S_2^{2-}(S^{2-})_4$. ESR [70] and EPR [71] spectral studies on MoS₃ have also been reported.

Table II records the structural type, space group and lattice parameters of various transition metal trichalcogenides [72–92].

4. Properties of transition metal trichalcogenides

4.1. Thermodynamic properties

Thermodynamic properties, e.g. heat of formation, entropy, free energy function, etc. for some of the transition metal trichalcogenides are recorded in Table III, together with their densities [59, 93–99].

4.2. Magnetic, electrical and optical properties

Transition metal trichalcogenides TX₃ (T = Ti, Zr, Hf, X = S, Se) and TS₃ (T = Nb, Ta) are diamagnetic semiconductors (Table II). TiS₃ has a Seebeck coefficient, α , of $-500 \,\mu V \,C^{-1}$, $E_g = 0.9 \,eV$ (optical absorption) and $e_d = 0.14 \,eV$ (resistivity-temperature curve) [73]. It is a semiconductor with metallic lustre and has a maximum value of electrical conductivity at around 200 K [73]. In order to investigate the possibility of Pierles transition in TiS₃, Kikkawa *et al.* [100] conducted conductivity measurements along the *b*-axis in the temperature range 77–400 K, and elec-

0									
Compound	Magnetic and electrical	Structural	Space	Lattice parame	ter		:		References
	properues	type	group	a (nm)	(um) d	с (nm)	β (deg)	$V(10^3 \text{ nm}^3)$	
TiS ₃	Diamagnetic semiconductor [72, 73]	Monoclinic Monoclinic Monoclinic	P2 ₁ or P2 ₁ /m P2 ₁ /m _	0.501 0.4958 0.4940 0.4973	0.3400 0.3400 0.3404 0.3443	0.8800 0.8778 0.8826 0.8714	98.4 97.32 97.3 97.3	- 146.8 -	[74-76] [77] [78] [79]
ZrS ₃	Diamagnetic semiconductor [72, 73]	I	C_{2h}^{2} [80]	0.5124 0.4990	0.6244 0.3633	0.8980 0.8988	97.28 97.3	165.4 _	[77] [78]
ZrSe ₃	Diamagnetic semiconductor [72-74]	Monoclinic Monoclinic	1 [0.5411 0.5409	0.3749 0.3746	0.9444 0.9439	97.48 97.30	189.9 _	[77] [78]
ZrTe ₃	Metallic [81]	I	Ι	0.5894	0.3926	1.0100	97.82	231.5	[77]
HfS ₃	Diamagnetic semiconductor [72, 74]	1	I	0.5092	0.3525	0.8967	97.38	162.8	[22]
HfTe ₃	1	Monoclinic -	1 1	0.5388 0.5879	0.3722 0.3902	0.9405 1.0056	97.98 97.98	228.5	[78] [77]
NbS ₃	Diamagnetic semiconductor [6, 82]	Monoclinic Triclinic Triclinic	- Iq	0.9680 0.4963 0.4949	0.3370 0.673 0.6684	1.4830 0.9144 0.9148	109.90 97.14 97.2	454.3 303 -	[9] [41] [78]
		Monoclinic Monoclinic	$C_{2}^{-}P2_{1}$	1.5635 0.4940	0.3474 0.6740	0.9986 1.8100	$\begin{aligned} (\alpha &= \gamma = 30) \\ 109.3 \\ 97.5 \end{aligned}$	1 1	[78] [83]
NbSe ₃		I	C_{2h}^{2} -P2 ₁ /m	0.4980	2×0.338	0.913	97.5	I	[84]
	1	Monoclinic Monoclinic Monoclinic	$P2_1/m$ $P2_1/m$	1.002 1.000 1.0478	0.3470 0.3480 0.3478	1.563 1.5629 1.5626	109.5 109.47 109.50	512.8 513.3 513.3	[9] [86]
TaS ₃	Diamagnetic semiconductor [28, 82, 86]	Monoclinic Orthorhombic Monoclinic	C2221, C222 or C _{mmm} P21/m	0.9520 3.6804 0.9515	0.3350 1.5173 0.3341	1.4920 0.3340 1.4912	110.00 - 109.99	446.8 186.5 445.0	[8] . [48–87] [88, 89]
TaSe ₃	Diamagnetic metallic [28, 90]	Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic	$C_{3h}^{3}-P2_{1}/m$ P2_{1}/m	1.002 1.0421 1.0384 1.0374 1.0402	0.348 0.3494 0.3500 0.3501 0.3495	1.565 0.9836 0.9790 0.9827 0.9829	109.6 106.36 106.3 106.11 106.11	513.4 - 350.0	[9] [28] [78] [91] [92]
MoS ₃ WS ₃	Amorphous Amorphous								[59]

TABLE II Magnetic and electrical properties and crystallographic data for some transition metal trichalcogenides

3697

			Source Sector				
punoduo	Molecular weight	Heat of formation, H ⁰ (kcal mol ⁻¹) at 298 K	Entropy, S ⁰ (cal deg K ⁻¹ mol ⁻¹) at 298 K	Free energy function	Density ^a (g cm ⁻³)	Reference	
iS ₃	144.09	- 102.7, - 99.2, - 99.7	21.7 ± 3	30.2 at 800 K 32.0 at 900 K	3.233	[77, 93–97]	
rS ₃	187.4	$\begin{array}{r} -150 \pm 15, -151.6, \\ -158 \pm 10 \end{array}$	21.7	29.0 at 298 K 32.4 at 1000 K	3.751	[77, 93, 98]	
rSe3	328.1	-100 ± 20	24.0 ± 3	3	5.708	[93, 98]	
rTe,	474.2	$-$ 70 \pm 20	33.0 ± 5	1	6.788	[77, 93]	
ſS	274.68	-149 ± 20	23.0 ± 4	33.4 at 900 K	5.573	[77, 93, 99]	
aSe ₃	417.83	-86 ± 10	22.0 ± 4	Ι	7.913	[96]	
loS ₃	192.13	$-74 \pm 5, -61.48$	18.0	I	I	[93]	
/S ₃	280.04	-70 ± 5	-18.5 ± 2.5	I	I	[93]	
HfS ₃ , 7.312 [77]	; HfTe ₃ , 8.205 [77], NbS	3, 4.15 [8]; NbSe ₃ , 6.41 [8, 45]; TaS ₃ , 6.	.18 [7], 5.92 [48]; TaSe ₃ , 8.11 [8], 8.08	[48].			

Figure 3 Temperature dependence of ρ for TiS₃ [100].

tron diffraction studies at room temperature (Fig. 3). It is seen that below 200 K resistivity increases with decreasing temperature with an activation energy of 74 meV and may be explained as due to a semiconducting extrinsic transition. It showed a minimum at room temperature ($\sigma = 2 \times 10^{-1} \,\Omega \,\text{cm}$). After that it increased with temperature in the range 320-400 K with an activation energy of 2.7 eV. Such a change in conductivity suggested the posssibility of Pierles transition. Liang et al. [101] also measured conductivity and Seebeck coefficient between 40 and 335 K for TiS₃ and noted that the conductivity is non-exponential and temperature independent below its maximum value at 165 K, and frequency dependent. This, together with dependence of Seebeck coefficient, suggested the disorder effects in TiS₃. Gorochov et al. [79] found a room-temperature Hall coefficient value of 2×10^{18} electron cm⁻³.

The electrical properties of compact as well as single crystals of zirconium trichalcogenides have also received attention. Perluzzo *et al.* [102] carried out resistivity, Hall coefficient, mobility and Seebeck coefficient measurements along the chain *b*-axis in the temperature range 100–500 °C on ZrS₃ crystals. This is a semiconductor with a room-temperature value of 15 Ω cm (Fig. 4a), which is 10⁴ times lower than that of powder-compressed pellet, with an activation energy of 0.20 ± 0.02 eV. The Hall coefficient data are shown in Fig. 4b and can be fitted with the expression

$$R_{\rm H} = 0.13 \exp(2400/T) \tag{1}$$

over the entire temperature range, resulting in an activation energy of 0.20 eV. The variation of mobility with the temperature is shown in Fig. 4c and is based on the data from Fig. 4a and b. It is evident from the figure that at low temperatures, mobility is limited by ionized scattering and is given by $6.5 \times 10^{-3} \text{ T}^{-3} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. The room-temperature

Figure 4 (a) ρ versus $10^3/T$, (b) $R_{\rm H}$ versus $10^3/T$ (the straight line represents a carrier activation energy of 0.02 eV, (c) μ versus T (the line represents the contribution of both ionic impurities and phonons) for ZrS₃ [102].

Seebeck coefficient value is $-850 \,\mu V \, K^{-1}$, which is quite close to that already reported [7]. It decreased with decreasing temperature showing thereby a typical semiconducting behaviour (Fig. 5a, b).

The electrical transport properties data for singlecrystal ZrSe₃ in the temperature range 100–400 K have also been investigated [103]. It is a semiconductor having a resistivity of $9 \times 10^2 \Omega$ cm. The Hall coefficient, $R_{\rm H}$, is negative and the electron carrier concentration is 1.6×10^{16} cm⁻³. The room-temperature

Figure 5 (a) Variation of the thermoelectric power with temperature for ZrS_3 , (b) variation of thermoelectric power with reciprocal of temperature. (---) A carrier activation energy of 0.2 eV. When the phonons limit the mobility $A \approx 1.8$ and when ionic impurities dominate A = 4 [102].

mobility is $0.45 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$, which is very much smaller compared to ZrS_3 [102]. The mobility decreases and follows a simple power law of $T^{-1.5}$, which suggests that the scattering mechanism is dominated by photons. The room-temperature Seebeck coefficient value for ZrSe_3 is $-820 \,\mu\text{V}\,\text{K}^{-1}$ and it increased linearly with reciprocal of temperature. ZrTe₃ shows a metallic behaviour [81, 103, 104]. The Group IVB transition metal trichalcogenides have also proved very attractive materials for photoelectrochemical measurements [79, 105, 106].

NbS₃ exhibits semiconducting behaviour with a room-temperature resistivity of the order $10^2-10^3 \Omega$ cm [6, 8, 83]. However, the electrical properties of NbSe₃ received much more attention [107, 108] where it showed the presence of two phase transitions at 145 and 59 K [109–112]. The roomtemperature resitivity value for NbSe₃ is of the order 600 $\mu\Omega$ cm. The temperature variation in the range 2–300 K is shown in Fig. 6. Above 145 K, ρ decreased

Figure 6 ρ versus T along the b-axis for NbSe₃ showing two phase transitions at $T_{e_1} = 145$ K and $T_{e_2} = 59$ K. The resistivity minima are at 125 and 49 K [109].

slightly with a slight curvature when the temperature was lowered, showing thereby a metallic behaviour. Below 10 K, resistivity appeared to saturate to a value limited by the defects. The most interesting features here are the two strong anomalies which appeared at $T_{c_1} = 145$ K with a maximum at 125 K and T_{c_2} with a maximum at 49 K, before resuming the metallic behaviour. The specific heat measurement also showed an anomaly at the same initial temperature, T_{c_1} , where resistivity increased very sharply. At T_{c_2} , it presents no pronounced anomalies (Fig. 7). These anomalies are strongly supressed by the applied electric field [113] and microwave field of 9 GHz [112]. This phenomenon has been interpreted in terms of charge density waves (CDW) as in many other lowdimensional conductors. Strong support for this hypothesis has been attained using electron and X-ray diffraction studies [46, 113-115]. Various models have been proposed dealing with CDW in NbSe₃ [116–118]. Briggs et al. [119] observed that T_{e_1} and $T_{\rm c}$, and the amplitude of the resistivity anomalies decreased with pressure. The resistivity measurements on NbSe₃ prepared by the high-pressure synthesis method, also confirmed the presence of two anomalies at 120 and 40 K [8], which are very similar to that already reported. Hall measurements [120-122] and further studies on thermoelectric power experiments [123] have also been made.

The electrical properties of TaS₃ also received much attention in the last few years [29, 50, 127–134]. Fig. 8 shows the temperature variation of resistivity in the range 77–480 K on a single crystal of an o-TaS₃ [29]. The room-temperature value for σ is of the order $3 \times 10^{-4} \Omega$ cm. It exhibits metallic behaviour above 270 K, whereas below 270 K a steep rise in resistivity is observed. It was therefore concluded that TaS₃

Figure 7 Heat capacity of NbSe₃ showing an anamoly at the same temperature (59 K) as ρ [110].

Figure 8 Electrical resistivity of TaS₃ [29].

undergoes a metal-semiconductor transition at 270 K [29]. Further studies also confirm the presence of this transition but near room temperature [127], and it was explained in terms of Peirles instability [128]. Another form of TaS₃ is monoclinic, which undergoes transition at 212 and 161 K [131]. Kikkawa et al. [98] reported that the o-TaS₃ phase is semiconducting and not metallic, as reported earlier. The effect of pressure on transport properties of TaS₃ has also been studied and it showed a pressure dependence of metalsemiconductor transition [135-137]. The temperature variation of Seebeck coefficient on TaS₃ and TaSe₃ has also been studied and two types of carrier transport process in these compounds have been suggested [138, 139]. TaSe₃ is metallic (σ 300 K = $2 \times 10^{-3} \,\Omega$ cm) in character below room temperature, as shown in Fig. 9.

Magnetic susceptibility measurements were carried out on NbSe₃ [140] and on TaSe₃ [140–145]. NbSe₃ is diamagnetic and showed a decrease in susceptibility beginning above its charge density transition at 144 K, but no change is observed near the transition at 59 K [140]. TaSe₃, however, showed a temperatureindependent susceptibility with a classical metallic behaviour [109].

NbS₃ has also been found to be superconducting with a transition temperature, $T_c = 2 \text{ K} [146]$. However, a great deal of interest was focussed on NbSe₃ [147–151]. It was noted that a small pressure is necessary for superconductivity to occur at 4.2 K. TaS₃ [151], TaSe₃ [141] and ZrTe₃ [152, 153] are also superconducting below 2 K.

4.3. Optical properties

The optical properties of layered transition metal trichalcogenides have received much less attention in

contrast to their dichalcogenides analogue, which has been studied extensively by Wilson and Yoffe [154]. Grimmeiss *et al.* [73] made preliminary optical absorption measurements on $ZrSe_3$ and HfS_3 and obtained a direct band gap of 2.8 and 3.0 eV and an indirect band gap of 2.0 and 2.1 eV, respectively.

Figure 9 Temperature dependence of orthorhombic and monoclinic TaS₃ [8].

Further work on growth and the optical absorption spectrum of these compounds was done by Schairer and Schafer [31] and their results are shown in Fig. 10, which shows a very good similarity between them. The common features here in the high absorption region are a strong and weak absorption peak in both k_{\parallel} and k_{\perp} polarization parallel and perpendicular to the *b*-axis of these layered compounds. The peaks are sharper and more intense at 80 K than at room temperature. No further change in absorption is observed even at much lower temperature (4.2 K). The two compounds differed appreciably in their absorption in the low-temperature region. The fundamental optical gap energies were also estimated from the optical data and were in good agreement, as reported earlier [73]. ZrS₃, HfS₃ [36] and ZrSe₃ [155] have also been shown to exhibit dichroism. Kurita et al. [156] studied the absorption behaviour near the absorption edge for ZrS₃ and ZrSe₃ single crystals, and found that ZrS₃ has a direct band gap of 2.56 eV. The indirect band gaps of 2.055 eV $(E_{\perp b})$ and 2.085 eV $(E_{\perp b})$ for ZrS₃ and of 1.535 eV ($E_{\parallel b}$ and $E_{\perp b}$) for ZrSe₃ are obtained at liquid helium temperature.

4.4. Intercalation

Transition metal trichalgonides TX_3 (T = Ti, Zr, Hf; X = S, Se) form intercalation compounds [157–173] when reacted with *n*-butyl lithium or by an electrochemical method [157–171] as follows

$$xLi + xe^- + TX_3 \rightarrow Li_xTX_3$$
 (2)

The optical, infrared and X-ray diffraction studies confirmed the formation of intercalation compounds.

Figure 10 Absorption spectrum of (a) ZrS₃, (b) HfS₃ at 300 K (upwardly shifted right-hand scale, and 80 K (left-hand scale), k_{\parallel} and k_{\perp} refer to the polarizations parallel and perpendicular to the *b*-axis of the layer compound [31].

TALBE IV Lattice expansion of Li₃TX₃ intercalation compounds^a

Compounds	Pure TX ₃				Li _x AX ₃			
	a (nm)	<i>b</i> (nm)	<i>c</i> (nm)	β (deg)	$\Delta a \text{ (nm)}$	$\Delta b (nm)$	Δc (nm)	$\Delta\beta$ (deg)
Li ₃ TiS ₃	1.111	0.346	0.912	98.0	0.12	+ 0.006	0.034	0.7
Li ₃ ZrS ₃	1.12	0.359	0.922	100	0.10	-0.003	0.024	0.7
Li ₃ ZrSe ₃	1.18	0.376	0.968	99.1	0.10	+0.001	0.024	1.6
Li ₃ HfS ₃	1.21	0.352	0.924	100	0.19	-0.008	0.027	2.6
Li ₃ HfSe ₃	1.15	0.371	0.952	98.2	0.07	-0.001	0.009	0.7
Li ₃ NbS ₃	1.70	0.348	1.15	98.1	0.14	0.000	0.140	12.7

 $^{a}\Delta a$, Δb , Δc and $\Delta \beta$ are the differences in lattice parameters and Bragg angles between the pure and lithiated trichalcogenides.

During this process, three lithium atoms are incorporated into the host crystal, while the TX_3 chains remain intact. Such reactions are accompanied by minimum structural changes, and often only by a small lattice expansion, and are reversible by appropriate thermal or chemical treatments. The diffraction pattern in such cases could be indexed on the basis of an expanded monoclinic lattice with the *b*-axis (chain axis) remaining constant.

Studies were also made to discover how the three lithium atoms are intercalated in the host MX_3 [158, 169]. A two-step mechanism has been proposed to explain the results of electrochemial intercalation [158, 159, 164] as follows:

$$MX_3 + 2Li \rightarrow Li_2 MX_3$$
 (3)

and

$$\operatorname{Li}_{2}MX_{3} + x\operatorname{Li} \rightarrow \operatorname{Li}_{2+x}MX_{3} \quad (0 < x < 1) \quad (4)$$

It is believed that the first step is responsible breaking X–X bonds for in MX₃ (i.e. $X-X^{2-} + 2e^{-} \rightarrow 2X^{-2}$) whereas the second step is believed to reduce the metal $(M^{4+} + e^- \rightarrow M^{(4-x)+})$. The electrochemical and diintercalation studies on $Li_x MX_3$ also show that the reaction is reversible only for (2 < x < 3). The irreversible behaviour for the composition range 0 < x < 2 has been interpreted in terms of structural changes from prismatic to octahedral coordination [161] which the metal atom is presumed to undergo during the first step of the intercalation process. However, according to Canadell et al. [173], this mechanism cannot be used to explain the results for chemical intercalation of MX_3 with n-BuLi. For chemical intercalation, a one-step mechanism has been proposed. During the process of intercalation of MX₃ with x Li (x < 3), there are always two phases Li₃MX₃ and MX₃, as if a metal atom is affected by three lithium atoms at a time [160, 172]. The X-ray analysis shows that all the parameters change from a, b and c in MX₃ to approximately 2a + 1, b and c + 0.3 in Li₃MX₃, and this does not support the proposal of a prismatic to octahedral coordination change as a reason for irreversibility of lithium intercalation in $Li_x MX_3$ (0 < x < 2). The infrared and Raman studies [172] on Li₃MX₃ show that lithium intercalation of MX₃ does indeed break the X-X bond.

The transition metal trichalcogenides of Groups IVB, VB and VIB also possess a marked difference

towards electrochemical reversibility. For example, in TiS_3 , low reversibility compared to $NbSe_3$ may be associated with a less stable trigonal prismatic coordination around the metal atom. A tendency to exhibit the octahedral coordination would lead to an irreversible situation. Thus it may be possible to make a battery having an energy density three times higher than is possible using TX_2 (Table V).

In recent years, MoS₃ has been proved to be a relatively more effective cathode material in making a battery by its reaction with lithium, but most of the information is guarded by patents [174-199]. The theoretical energy density of lithium cells based on reaction by the *n*-BuLi technique and electrochemically to form Li₄MoS₃ is significantly higher (Table V) than is reported for crystalline transition metal sulphides. Whittingham et al. [200] proposed a mechanism for lithium insertion in MoS₃ and TiS₃ and observed high reversibility in the former and poor in the latter case. The X-ray absorption spectroscopic studies have been made to determine the structure of MoS_3 , WX_3 , (X = S, Se) [201] and their lithium intercalation compounds [202]. It shows that the fully lithiated structure of Li_4MoS_4 [Mo-Mo = 0.266(3) nm, Mo–S = 0.250(3) nm] consists of an octahedral Mo₆ cluster analogous to those found in Chevrel phase materials. Similar clusters may be formed on lithium intercalation of WS3 and WSe3 with metal-metal, metal-chalcogen distances for intercalation compounds Li₄WS₃ and Li₅WSe₃ of 0.264(3), 0.247(3), 0.267(3) and 0.261(3) nm, respectively.

In addition, the formation of sodium intercalation compounds of TiS_3 , NbS_3 and TaS_3 have also been reported [203]. These results demonstrated that TiS_3 disproportionate to TiS_2 and NbS_3 gradually under-

TABLE V Cell e.m.f. and energy density for some Li/TX₃ couples

TX ₃	Cell e.m.f. (V)	Energy density (Wh K g ⁻¹)
TiS ₃	1.7	840
ZrS ₃	1.2	450
ZrSe ₃	1.7	390
HfSe ₃	1.3	240
NbS	1.6	10
NbSe ₃	1.5	340
TaS ₃	1.6	430
TaSe ₃	1.7	310
MoS_3	2.0	1040

goes irreversible transformation that decreases the amount of niobium which can be reversibly inserted, whereas TaS_3 is found to be most suitable. TaS_3 also forms an intercalation compound with hydrazine where the transition temperature is suppressed from 2.2 K to 1.5 K [204]. No attempts have been made to undertake similar studies on other transition metal trichalcogenides.

Conclusion

The preparative methods and crystal structures of transition metal trichalcogenides are described. The properties, such as physical, chemical, thermodynamic, magnetic, electrical, optical and intercalation, etc., are reviewed.

References

- 1. W. BILTZ and P. EHRILICH, Z. Anorg. Allg. Chem. 234 (1937) 97.
- 2. H. HAHN and B. HARDER, ibid. 288 (1956) 241.
- 3. A. BENALEM and D. M. SCHLEICH, Mater. Res. Bull. 23 (1988) 857.
- K. OSHIMA, M. YOKOYAMA, H. NINODE, M.
 WAKIHARA and M. TANIGUCHI, J. Solid State Chem. 65 (1986) 392.
- 5. S. CAUNE, Y. MATHEY and D. PAILHAREY, Thin Solid Films 174 (1989) 289.
- 6. H. FJELLVAAG, S. FURUSETH, A. KJEKSHUS and T. RAKKE, Solid State Commun. 63 (1987) 293.
- 7. F. KADIJK and F. JELLINEK, J. Less Common Metals 19 (1969) 421.
- S. KIKKAWA, M. KOIZUMI, S. YAMANAKA, Y. ONUKI and S. TANUMA, J. Solid State Chem. 40 (1981) 28.
- 9. S. KIKKAWA, M. KOIZUMI, S. YAMMANAKA, Y. ONUKI, R. INADA and S. TANUMA, *ibid.* **41** (1982) 315.
- 10. A. A. OPALOVSKII and V. E. FEDOROV, Usp. Khim. 35 (1953) 203.
- 11. B. L. MOLDOVSKI, J. Gen. Chem. 3 (1933) 603.
- 12. I. K. TAIMNI and R. P. AGARWAL, Anal. Chim. Acta 9 (1953) 203.
- 13. I. K. TAIMNI and S. N. TANDON, ibid. 22 (1960) 34.
- 14. A. Y. ZVORKYKIN, F. M. PERELMAN and V. V. TARASOV, *Zh. Neorg. Khim-1* 6 (1961) 1994.
- 15. E. Y. RODE and B. A. LEBEDEV, Russ J. Inorg. Chem. 6 (1961) 608.
- 16. M. HARAN, N. SRIVASTAVA and S. GHOSH, Proc. Nat. Acad. Sci. India A29 (1960) 178.
- 17. G. A. TSIGDINOS, in "Topics in Current Chemistry" (Springer-Verlag) 76 (1978) 65.
- S. K. SRIVASTAVA, B. N. AVASTHI and S. BASU, J. Mater. Sci. Lett. 3 (1984) 313.
- R. N. BHATTACHARYA, R. N. LEE, C. Y. POLLAK, H. FRED and D. M. SCHLEICH, J. Non-Cryst. Solids 91 (1987) 235.
- D. M. SCHLEICH, H. S. CHANG and Y. L. BARBERIO, in "Proceedings of the Electrochemical Society 1988, pp. 88-6 (Proc. Symp. Primary Secondary Ambient Temp. Lithium Batteries, 1987, p. 464).
- 21. G. LAPERRIERE, B. MARSON and D. BELANGER, Syn. Metals 29 (1989) F201.
- 22. J. C. WILDERVANCK and F. JELLINEK, Z. Anorg. Allg. Chem. 328 (1964) 309.
- 23. S. K. SRIVASTAVA, B. N. AVASTHI, B. DAS and S. BASU, *Mater. Lett.* 1 (1983) 178.
- 24. S. K. SRIVASTAVA and B. N. AVASTHI, J. Less-Common Metals 124 (1986) 85.
- 25. B. M. NIRSHA, L. V. SAVELEVA and V. L. REKHAR-

SK11, Izv. Akad. Nauk (SSSR), Neorg. Mater. 21 (1985) 375.

- 26. O. GLEMSER, H. SAUER and P. KONIG, Z. Anorg. Allg. Chem. 257 (1948) 241.
- 27. E. FURIMSKY and C. H. AMBERG, Can. J. Chem. 53 (1975) 3367.
- 28. E. BJERKELUND and A. KJEKSHUS, Acta Chem. Scand. 19 (1965) 701.
- 29. T. SAMBONGI, K. TSUTSUMI, Y. SHIOZAKI, Y. YAMAYA and Y. ABI, Solid State Commun. 22 (1977) 729.
- 30. A. H. THOMSON, A. ZETTL and G. GRUNER, *Phys. Rev. Lett.* 47 (1981) 64.
- 31. W. SCHAIRER and M. W. SCHAFER, Phys. Status Solidi A17 (1973) 181.
- 32. F. LEVY and H. BERGER, J. Crystal Growth 61 (1983) 61.
- F. HULLIGER, in "Physics and Chemistry of Materials with Layered Structures", Vol. 5, edited by F. Levy (Reidel, Dordrecht, 1976).
- 34. A. MEERSCHAUT, Ann. Chim. Fr. 7 (1982) 131.
- 35. J. ROUXEL, A. MEERSCHAUT, L. GUEMAS and P. GRESSIER, *ibid.* 7 (1982) 445.
- J. ROUXEL, in "Intercalated Layered Materials", Vol. 6, edited by F. Levy (Reidel, Dorecht, 1979) p. 201.
- 37. J. A. WILSON, Phys. Rev. B Cond. Mater. 19 (1979) 6456.
- 38. W. KRONERT and V. PLIETHI, Z. Anorg. Allg. Chem. 336 (1965) 207.
- 39. F. JELLINEK, R. A. POLLACK and M. W. SCHAFER, Mater. Res. Bull. 9 (1976) 845.
- R. HOFFMANN, S. SHAIK, J. C. SCOTT, M. H. WHANGTO and M. J. FUSHEE, J. Phys. C3 (1983) 1773.
- R. RIJNSDROP and F. JELLINEK, J. Solid State Chem. 25 (1978) 325.
- 42. F. K. TAGGART and A. D. WADSLEY, Aust. J. Chem. 11 (1958) 445.
- 43. K. ENDO, H. IHARA, K. WATANABE and S. GONDA, J. Solid State Chem. 44 (1982) 268.
- 44. E. BJERELUND, J. H. FERMAR and A. KJIKSHUS, Acta Chem. Scand. 20 (1966) 1836.
- 45. A. MEERSHAUT and J. ROUXEL, J. Less-Common Metals 39 (1975) 197.
- 46. J. L. HODEAU, M. MAREZIO, C. ROUCAU, R. AYROLES, A. MEERSCHAUT, J. ROUXEL and P. MON-CEAU, J. Phys. C 11 (1978) 4117.
- 47. R. HOFFMANN, S. SHAIK, J. C. SCOTT, M. H. WHAN-GIBO and M. J. FUSHU, J. Solid State Chem. 34 (1980) 263.
- 48. E. BJERKELUND and A. KJIKSHUS, Z. Anorg. Allg. Chem. 328 (1964) 235.
- 49. A. MEERSCHAUT, J. ROUXEL, P. HAEN, P. MON-CEAU and M. NUNEZ-REGUEIRO, J. Phys. 40 L (1979) 157.
- 50. A. MEERSCHAUT, L. GUEMAS and J. ROUXEL, J. Solid State Commun. 36 (1981) 118.
- 51. D. W. BULLET, J. Phys. C. Solid State Phys. 12 (1979) 277.
- 52. Idem., J. Solid State Chem. 33 (1980) 13.
- 53. N. SHIMA, J. Phys. Soc. Jpn 52C (1983) 578.
- 54. F. S. KHUMALO and H. P. HUGHES, *Phys. Rev.* B22 (1980) 2078.
- 55. H. W. MYRON, B. N. HARMON and F. S. KHIMALO, J. Phys. Chem. Solids 42 (1981) 2663.
- K. ENDO, H. IHARA, S. GONDA and K. WATANABE, *Physica* **105B** (1981) 159.
- 57. K. ENDO, H: THARA, K. WATANABE and S. GONDA, J. Solid State Chem. 39 (1981) 215.
- T. JWAZUMI, M. IZUMI, K. U. CHINOKURA, R. YOSHIZAK and E. MATSUVRA, *Physica* (B, C) 143 (1986) 255.
- 59. F. JELLINEK, Nature 192 (1961) 1065.
- 60. R. J. H. HOORHOEVE and H. B. M. WALTERS, Z. Anorg. Allg. Chem. 37 (1970) 165.
- 61. P. RATNASWAMY and A. LEONARD, J. Catal. 26 (1972) 352.
- P. RATNASWAMY, L. RODRIQUE and A. LEONARD, J. Phys. Chem. 77 (1973) 2242.
- 63. G. C. STEVENS and I. EDMONDS, J. Catal. 37 (1975) 544.
- 64. E. DIEMANN, Z. Anorg. Allg. Chem. 432 (1977) 127.
- 65. K. S. LIANG, L. S. CRAMER, S. P. JOHNSTON, C. H.

CHANG, A. J. JACOBSON, A. J. De DENEUF VILLE and R. R. CHIANELLI, J. Non Cryst. Solids **42b** (1980) 345.

- 66. C. H. CHANG and S. S. CHAN, J. Catal. 37 (1975) 544.
- 67. P. BELOUGNE and J. V. ZANCHETTA, *Rev. Chim. Miner.* 16 (1979) 565.
- F. Z. CHIEN, S. C. MOSS, K. S. LIANG and R. R. CHI-ANELLI, *Phys. Rev.* 329 (1984) 4606.
- J. B. GOODENOUGH, "Chemistry and Uses of Molybdenum", Proceedings of the 4th International Symposium, Colorado, USA (Climax Molybdenum Company, 1982) p. 1.
- 70. Y. BENSIMON, P. BELOUGNE, J. C. GUINTINI and J. V. ZANCHETTA, J. Phys. Chem. 88 (1984) 2754.
- 71. D. B. BELOUGNE and J. V. ZANCHETTA, J. Phys. Chem. Solids 18 (1987) 1197.
- 72. H. HARALDSON, E. ROST, A. KJEKSHUS and A. STEF-FENSEN, Acta Chem. Scand. 17 (1968) 1283.
- 73. H. G. GRIMMEISS, A. RABENAU, H. HANN and P. NEISS, Z. Elektrochem. 65 (1961) 776.
- 74. F. K. McTAGGART, Aust. J. Chem. 11 (1958) 471.
- 75. Idem., ibid. 11 (1958) 445.
- 76. H. HAHN and B. HARDER, Z. Anorg. Allg. Chem. 228 (1956) 241.
- 77. L. BRATTAS and A. KJEKSHUS, Acta Chem. Scand. 26 (1972) 3441.
- 78. Y. ONUKI, R. INADA, S. YAMANAKA and H. KAMIMURA, Solid State Ionics 11 (1983) 195.
- 79. O. GOROCHOV, A. KATTY, N. Le NAGARD, C. LEVY-CLEMENT and D. M. SCHLEICH, *Mater. Res. Bull.* 18 (1983) 111.
- 80. F. FURSETH, L. BRATTAS and A. KHEKSHUS, Acta Chem. Scand. A29 (1975) 623.
- S. TAKAHASHI, T. SAMBONGI and S. OKADA, J. de Phys. C3 (1983) 1733.
- 82. L. A. GRIGORYAN and A. V. NOVOSELOVA, Dokl. Acad. Warse SSR 144 (1962) 795.
- 83. F. JELLINEK, G. BRAUER and H. MULLER, *Nature* 185 (1960) 376.
- 84. K. KADJIK, Thesis, Groningen (1969).
- A. MEERSCHAUT and J. ROUXEL, J. Less-Common Metals 39 (1975) 197.
- L. A. ASLANOV, A. Ya. P. SIMANOV, A. V. NOVOSELOVA and Yu. M. UKRAINSKII, Russ. J. Inorg. Chem. 8 (1963) 1381.
- A. MEERSCHAUT, L. GUEMAS and J. ROUXEL, C.R. Acad. Sci. Ser. C-290 (1980) 215.
- C. ROUCAU, R. AYROLES, P. MONCEAU, L. GUEMAS, A. MEERSCHAUT and J. ROUVEL, *Phys.* Status Solidi (a) 62 (1980) 483.
- 89. T. CORNELISSENS, G. VAN TENDELOO, J. VANLAN-DUYT and S. AMELINKSE, *Phys. Status Solidi (a)* 48 (1978) K5.
- 90. L. A. ASLANOV, Yu. M. UKRAINSKU and Yu. P. SIMANOV, Russ. J. Inorg. Chem. 8 (1963) 937.
- 91. K. YAMAYA and G. OOMI, J. Phys. Soc. Jpn 51 (1982) 3512.
- 92. L. BRATTAS and A. KJEKSHUS, Acta Chem. Scand. 25 (1971) 2783.
- K. C. MILLS, "Thermodynamics Data for Inorganic Sulphide, Selenide and Tellurides" (Butterworths, London, 1974).
- 94. W. BILTZ, P. EHRLICH and K. MEISEL, Z. Anorg. Allg. Chem. 34 (1937) 97.
- 95. J. BEER and F. K. McTAGGART, Aust. J. Chem. 11 (1958) 458.
- JANAF, Natural Standard Science Bureau of US, 37, June 1971.
- 97. W. B. JOHNSON and W. L. WORRELL, J. Electrochem. Soc. 133 (1986) 1966.
- 98. F. I. STROTZER, W. BILTZ and K. MEISEL, Z. Anorg. Allg. Chem. 242 (1939) 249.
- 99. H. HARALDSEN, A. KJEKSHUS, E. ROST and A. STEF-FENSEN, Acta Chem. Scand. 17 (1963) 17.
- S. KIKKAWA, M. KIZUMI, S. YAMANKA, Y. ONUKI and S. TANUMA, Phys. Status Solidi A61 (1980) K55.
- H. P. LIANG, C. M. JACKSON and G. GRUENER, Solid State Commun. 46 (1983) 505.

- 102. G. PERLUZZO, A. A. LAKMI and S. JINDIL, *ibid.* **35** (1980) 301.
- 103. T. IKARI, R. PROVENCHER, S. JINDIL and R. PROVENCHER, *ibid.* 45 (1983) 113.
- S. TAKAHSASHI, T. SAMBONGI and S. OKADA, J. Phys. Collog. C13 (1983) Colloq. Int. CNRS Phys. Chem. Met. Synth. Org. (1982) p. 1733.
- 105. O. GOROCHOV, A. KATTY, N. LENAGARD, C. LEVY, D. SCHLEICH and H. TRIBUTSCH, "Solar Energy R and D", Eur. Comm. Ser. D, 1982, Photo Chem. Photoelectrochem. Photobiol. Processes p 78. Chem. Abst. 97: 147576d.
- 106. A. M. REDON, Electrochem. Acta 30 (1985) 1365.
- 107. J. ROUXEL, A. MEERSEHAUT, P. HAEN and P. MON-CEAU, Ann. NY Akad. Sci. 313C (1978) 701.
- 108. P. MOLINIE, A. MEERSCHAUT, J. ROUXEL, P. MON-CEAU and P. HAEN, *Mov. J. Chim.* 13 (1977) 205.
- 109. P. HAEN, P. MONCEAV, B. TISSIER, G. WAYSAND, A. MEERSCHAUT, P. MOLINIE and J. ROUXEL, in "14th International Conference on Low Temperature Physics", Otaniemi, Finland Vol. 5 (1975) p. 445.
- 110. J. CHAUSSY, P. HAEN, J. C. LASJAUNIAS, P. MON-CEAU, G. WAYSAND, A. WAINTAL, A. MEER-SCHAUT, P. MOLINIE and J. ROUXEL, Solid State Commun. 20 (1976) 759.
- 111. N. P. ONG and P. MONCEAU, Phys. Rev. B16 (1977) 3443.
- 112. P. MONCEAU, N. P. OND, A. M. PORTIS, A. MEER-SCHAUT and J. ROUXEL, Phys. Rev. Lett. 37 (1976) 602.

Y. SHIOZAKI, M. IDO, T. SAMBONGI, K. YAMAYA and Y. ABE, *ibid.* **39** (1977) 1675.

- 114. S. NAKAMURA and R. AOKI, Solid State Commun. 27 (1978) 151.
- 115. R. M. FLEMING, D. E. MONCTON and D. B. McWHAN, *Phys. Rev. Lett.* B18 (1978) 5560.
- 116. P. A. LEE and T. M. RICE, Phys. Rev. B 19 (1979) 3970.
- 117. J. BARDEEN, Phys. Rev. Lett. 42 (1979) 1498.
- J. RENARD, "The Physics and Chemistry of Low Dimensional Solids", edited by L. Alcacer (Reidel, Dordrecht, 1980) p. 293.
- 119. A. BRIGGS, P. MONCEAU, M. NUNEZ-REG-UEIRO, J. PEYRARD, M. RIBAULT and J. RICHARD, J. Phys. C Solid State Phys. 13 (1980) 2117.
- 120. N. P. ONG and P. MONCEAU, Solid State Commun. 26 (1978) 487.
- 121. K. KAWABATA, M. IDO and T. SAMBONGI, J. Phys. Soc. Jpn 50 (1981) 1992.
- 122. E. N. DOLGOV, Solid State Commun. 50 (1984) 405.
- 123. T. TAKAGAKI, M. IDO and T. SAMBONGI, J: Phys. Soc. Jpn 45 (1978) 2039.
- 124. A. BONNET, P. SAID and A. CONAN, *Phys. Rev. (Appl.)* 17 (1982) 701.
- 125. A. BONNET, A. CONAN and P. SAID, J. Phys. Fr. 43 (1982) 675.
- 126. R. H. DEE, P. M. CHAINKIN and N. P. ONG, *Phys. Rev. Lett.* **42** (1979) 1234.
- 127. S. E. TRULLINGER, M. D. MILLER, R. A. GUYER, A. P. BISHOP, F. PALMER and J. A. KRUM-HONSL, *Phys. Rev. Lett.* **B16** (1977) 688.
- 128. M. J. COHEN and A. J. HEEGER, Phys. Rev. B16 (1977) 688.
- 129. T. TAKOSHINA, M. IDO, K. TSUTSUMI and T. SAM-BONGI, J. Phys. Soc. Jpn 35 (1980) 911.
- 130. P. MONCEAU, H. SALVA and Z. Z. WANG, J. Phys. Colloq. C3 (1983) Colloq. Int. CNRS, Phys. Chem. Met. Synth. Org. (1982) p. 1639. Chem. Abst. 99: 185604t.
- 131. D. C. JOHNSTON, J. P. STOKES, P. HSEIH and G. LING, *ibid.* p. 1749. Chem. Abst. 99: 985619u.
- 132. M. RENARD and Z. Z. WANG, ibid. p. 1761.
- 133. H. P. GESERICH, G. SCHEIBER, L. LEVY and P. MON-CEAU, *Physica* 143B (1986) 174.
- 134. D. ZHANG, P. WU, X. CHEN, H. DUAN and S. LIN, Solid State Commun. 61 (1987) 377.
- 135. M. IDO, K. TSUTSUMI and T. SAMBONGI, *ibid.* **29** (1979) 399.

- 136. D. MOSES and R. M. DOYSEL, *Phys. Rev. B Cond. Matter* 31 (1985) 3202.
- 137. Z. DIAN-LIN, D. HONG-MIN, C. XIA-NFEN, W. PEIJUM and L. SHU-YUAN, *Physica* (B, C) 143 (1986) 171.
- 138. B. FISHER, Solid State Commun. 48 (1983) 437.
- Idem., Phys. Rev. B Cond. Matter. 35 (1987) 2687.
 F. J. DISALVO, J. V. WASZCZAK and K. YAMAYA, J. Phys. Chem. Solids 41 (1980) 1311.
- 141. T. SAMBONGI, M. YAMAMOTO, S. TSUTSUMI-KITOMI, Y. YOICHI, K. YAMAYA and Y. ABE, J. Phys. Soc. Jpn 42 (1977) 1421.
- 142. M. YAMAMOTO, ibid. 45 (1978) 431.
- 143. J. D. KULICK and J. C. SCOTT, Bull. Amer. Chem. Soc. 24 (1979) 387.
- 144. K. YAMAYA and T. H. GEBALLE, Solid State Commun. 31 (1979) 627.
- 145. K. YAMAYA, Y. TAJIMA and M. MORITA, *Physica* (B, C) 143 (1986) 237.
- 146. M. IZUMI, T. NAKAYAMA, K. UCHINOKURA, R. YOSHIZAKI and E. MATSUURA, *Molec. Cryst. Liq. Cryst.* 121 (1985) 79.
- 147. P. MONCEAU, P. PEYRARD, J. RICHARD and P. MOLINIE, Phys. Rev. Lett. **39** (1977) 161.
- 148. C. M. BASTUSCHECK, R. A. BUHRMAN, J. D. KULICK and J. C. SCOTT, Solid State Commun. 36 (1980) 983.
- 149. K. KAWABATA and M. IDO, ibid. 44 (1982) 1539.
- 150. K. YAMAYA and G. OOMI, J. Phys. Soc. Jpn 52 (1982) 1886.
- M. IZUMI, T. NAKAYAMA, K. UCHINOKURA, R. YOSHIZAKI and E. MATSUURA, *Molec. Cryst. Liq. Cryst.* 121 (1985) 79.
- S. TAKAMASHI, T. SAMBONGI and S. OKADA, J. Phys. Collog. C(3) Int. CNRS Phys. Chem. Met. Synth. Org. (1982) p. 1733. Chem. Abst. 99: 185758p.
- 153. H. NAKAJIMA, K. NOMURA and T. SAMBONGI, *Physica (B, C)* **143** (1986) 240.
- 154. J. A. WILSON and A. D. YOFFE, Adv. Phys. 19 (1969) 169.
- 155. F. S. KHUMALO, C. G. OLSON and D. W. LYNCH, *Physica* **105B** (1981) 163.
- 156. S. KURITA, J. L. STAEHLI, M. GUZZI and F. LEVY, *ibid.* **105B** (1981) 169.
- 157. M. S. WHITTINGHAM, J. Electrochem. Soc. 122 (1975) 526.
- 158. Idem., ibid. 123 (1976) 315.
- 159. Idem., Progr. Solid State Chem. 12 (1978) 41.
- 160. R. R. CHIANELLI and M. B. DINES, Inorg. Chem. 14 (1975) 2417.
- 161. D. W. MURPHY and F. A. TRUMBORE, J. Electrochem. Soc. 123 (1976) 960.
- 162. D. W. MURPHY, P. A. CHRISTIAN, F. J. DISALVO and J. N. CARIDES, *ibid.* **126** (1979) 497.
- 163. A. J. JACOBSON, R. R. CHIANELLI, S. M. RICH and M. S. WHITTINGHAM, *Mater. Res. Bull.* 19 (1979) 1437.
- 164. A. J. JACOBSON, Solid State Ionics 5 (1981) 65.
- 165. J. ROUXEL, "Physics of Intercalation", Vol. 172, NATO Series B Physics, edited by A. P. Legrand and S. Fiandrois (Plenum. New York, 1982) p. 127.
- 166. T. M. MURUGESAN and J. GOPALKRISHNAN, Proc. Ind. Akad. Sci (Chem. Sci.) 91 (1982) 7.
- 167. Y. ONUKI, R. INADA, S. TANUMA, S. YAMANAKA and H. KAMIMURA, Syn. Metals 6 (1983) 241.
- 168. Idem., Solid State Commun. 11 (1982) 195.
- 169. J. GOPALKRISHNAN, Proc. Ind. Akad. Sci. (Chem. Sci.) 93 (1984) 421.
- 170. Idem., Bull. Mater. Sci. 7 (1985) 201.
- 171. G. BETZ and H. TRIBUTSCH, Progr. Solid State Chem. 16 (1985) 195.
- 172. G. SOURISSEAU, S. P. GWET, P. GARD and Y. MATHERY, J. Solid State. Chem. 72 (1988) 257.
- 173. E. CANADELL, C. THIEFFRY, Y. MATHEY and M. H. WHANGBO, *Inorg. Chem.* 28 (1989) 3043.
- 174. G. L. HOLLECK, F. S. SHUKER and S. B. BRUMMER,

Intersoc Energy Confer. Eng. Conf. 10th (IEEE, New York, 1975) p. 444. Chem. Abst. 84: 124368e.

- 175. G. L. HOLLECK, K. M. ABRAHAM, P. B. HARRIS, J. L. GOLDMAN, J. AVERY, M. W. RUPICH and S. B. BRUM-MER, Proc. Power Sources Symp. (1980) 68.
- 176. H. IDEDA and S. NARUKAWA, Jpn Pat. 7683 123, 21 July 1976.
- 177. D. N. PALMER and G. W. FERREL, US Pat. 4416915, 22 November 1983.
- 178. S. SEKIDO, T. SOTOMURA and Y. NINOMIYA, Eur. Pat. 77 169, 20 April 1983.
- 179. Toshiba Corporation Japan, Jap. Pat. 5875779, 7 May 1983.
- 180. Jap. Pat. 5958765, 4 April 1948.
- 181. E. J. PLICHTA and M. SALOMON, J. Power Sources 13 (1984) 319.
- 182. Sanyo Electric Co. Ltd; Jap. Pat. 6010558, 19 January 1985.
- 183. Hitachi Maxell Ltd, Jap. Pat. 6049 573, 18 March 1985.
- M. SOLUMAN and E. J. PLICHTA, US Pat. 665114, 18 January 1985.
- 185. K. WEST, B. C. ZACHAU, T. JACOBSEN and S. ATLUNG, J. Electrochem. Soc. 132 (1985) 3061.
- I. MATSUMOTO and S. IKEYAMA, Jap. Pat. 60198066, 7 October 1985.
- 187. T. YAMAOTO S. KIKKAWA and M. KOIZUMI, J. Electrochem. Soc. 133 (1986) 1558.
- 188. S. FURUKAWA, K. MORIWAKI, S. UBUKAWA and S. SO, Jap. Pat. 61 107 661, 26 May 1986.
- 189. Idem., Jap. Pat. 61 107 661, 26 May 1986.
- 190. T. MORITA, N. EDA, H. KOSHINA, Y. NISHIKAWA and T. MATSUI, Jap. Pat. 63 314 778, 22 December 1988.
- D. M. PASQUARIELLO, E. B. WILLSTAEDT and K. M. ABRAHAM, in "Proceedings of the Electrochemical Society" (1989) p. 89 (Proceedings of the Symposium on Materials Process Lithium Batteries, 1988) p. 251. Chem. Abst. 111: 60958p.
- 192. G. L. HOLLECK and T. NGUYEN, Eur. Pat. 332 338, 11 March 1989.
- 193. Jap. Pat. 13 268, 9 March 1989.
- 194. B. V. RATNAKUMAR, S. DE STEFANO and C. P. BAN-TSTON, J. Appl. Electrochem. 19 (1989) 813.
- 195. T. YAMASHITA, S. SEKIDO, T. TAKEDA and S. TSUCHA, Matsushita Electric Industrial Co. Ltd, Jap. Pat. 1124973, 17 May 1989.
- T. YAMASHITA, S. SEKIDO and T. TAKEDA, Matsushita Electric Industrial Co. Ltd Jpn, Eur. Pat. 1 124 974, 17 May, 1989.
- 197. H. TER, W. LEONARD and F. A. TRUMBORE, American Telephone and Telegraph Co., Eur. Pat. Appl. 375 254, 27 June 1990.
- 198. W. C. FANG and B. VYAS, American Telephone and Telegraph Co., US Pat. 4892 795, 9 September 1990.
- 199. S. SUBBA RAO, D. H. SHEN, F. DELIGIANNIS, C. K. HUANG and G. HALPERT, J. Power Sources 29 (1990) 579.
- M. S. WHITTINGHAM, R. R. CHIANELLI and A. J. JACOBSON, in Proceedings of the Electrochemical Society, 1980 Proceedings of the Workshop on Lithium-Nonaqueous Battery Electrochemistry, Cleveland, OH, pp. 206–22.
- 201. S. P. CRAMER, K. S. LIANG, A. J. JACOBSON, C. H. CHANG and R. R. CHIANELLI, *Inorg. Chem.* 23 (1984) 1215.
- 202. R. A. SCOTT, A. J. JACOBSON, R. R. CHAINELLI, W. H. PAN, E. I. STIEFEL, I. H. EDWARD, O. KEITH and S. P. CRAMER, *ibid.* 25 (1986) 1461.
- 203. M. ZANINI, J. Electrochem. Soc. 132 (1985) 588.
- 204. K. YAMAYA, T. H. GEMBALLE and J. V. ACRIVOS, *Physica (B, C)* 105 (1981) 441.

Received 2 September and accepted 10 September 1991